Comments
yourfanat wrote: I am using another tool for Oracle developers - dbForge Studio for Oracle. This IDE has lots of usefull features, among them: oracle designer, code competion and formatter, query builder, debugger, profiler, erxport/import, reports and many others. The latest version supports Oracle 12C. More information here.
Cloud Expo on Google News
SYS-CON.TV
Cloud Expo & Virtualization 2009 East
PLATINUM SPONSORS:
IBM
Smarter Business Solutions Through Dynamic Infrastructure
IBM
Smarter Insights: How the CIO Becomes a Hero Again
Microsoft
Windows Azure
GOLD SPONSORS:
Appsense
Why VDI?
CA
Maximizing the Business Value of Virtualization in Enterprise and Cloud Computing Environments
ExactTarget
Messaging in the Cloud - Email, SMS and Voice
Freedom OSS
Stairway to the Cloud
Sun
Sun's Incubation Platform: Helping Startups Serve the Enterprise
POWER PANELS:
Cloud Computing & Enterprise IT: Cost & Operational Benefits
How and Why is a Flexible IT Infrastructure the Key To the Future?
Click For 2008 West
Event Webcasts
Self-Assembling Silica Microwires May Herald New Generation of Integrated Optical Devices

Silica microwires are the tiny and as-yet underutilized cousins of optical fibers. If precisely manufactured, however, these hair-like slivers of silica could enable applications and technology not currently possible with comparatively bulky optical fiber. By carefully controlling the shape of water droplets with an ultraviolet laser, a team of researchers from Australia and France has found a way to coax silica nanoparticles to self-assemble into much more highly uniform silica wires.

Self-assembled silica wires illuminated by HeNe (helium-neon) laser light from one end. Image courte ...

Self-assembled silica wires illuminated by HeNe (helium-neon) laser light from one end. Image courtesy John Canning.

The international team describes their novel manufacturing technique and its potential applications in a paper published today in the Optical Society’s (OSA) open-access journal Optics Materials Express. This technique is particularly significant, according to the researchers, because it could, for the first time, enable silica to be combined with any material through a process of microwire self-assembly.

“We’re currently living in the ‘Glass Age,’ based upon silica, which enables the Internet,” says John Canning, team member and a professor in the school of chemistry at The University of Sydney in Australia. “Silica’s high thermal processing, ruggedness, and unbeatable optical transparency over long distances equate to unprecedented capacity to transmit data and information all over the world.”

Silica, however, is normally incompatible with most other materials so functionalizing silica (giving it the capability) to do more than just carry light has been a challenge. Further, bridging the gap between the light-speed transmission of data through silica and electronic and photonic components – such as optical switches, optical circuits, photon sources, and even sensors – requires some form of interconnect. But this transition is highly inefficient using optical fibers and interconnection losses remain one of the largest unresolved issues in optical communications.

Silica microwires, if they could be manufactured or self-assembled in place, have the potential to operate as optical interconnects. They also could achieve new functionality by adding different chemicals that can only be introduced by self-assembly.

Silica wires, unlike optical fiber, have no cladding, which means greater confinement of light in a smaller structure better suited for interconnection, further minimizing losses and physical space. “So we were motivated to solve the great silica incompatibility problem,” explains Canning.

To this end, the researchers came up with the idea of using evaporative self-assembly of silica nanoparticles at room temperature. They recently reported this breakthrough in the journal Nature Communications, demonstrating single-photon-emitting nanodiamonds embedded in silica, which is a first step toward a practical photon source for future quantum computing.

The key to carrying this innovation further, as described in their new research published today in Optical Materials Express, is perfecting the manufacturing process so highly uniform wires self-assemble from nanoparticles suspended in a solution. The challenge has been that as naturally forming round droplets evaporate, they produce very uneven silica microwires. This is due to the microfluidic currents inside the droplet, which corral the nanoparticles into specific patterns aided and held together by intermolecular attractive forces. The nanoparticles then crystalize when the solvent (water) evaporates.

Canning and his team realized that by changing the shape of the droplet and elongating it ever so slightly, they could concurrently change the flow patterns inside the drop, controlling how the nanoparticles assemble.

The researchers did this by changing the “wettability” properties of the glass the drops were resting upon. The team used an ultraviolet laser to alter and pattern a glass made of the mineral borosilicate. This patterning made the surface more wettable in a very controlled way, allowing the droplet to assume a slightly more oblong shape. This subtle shape change was enough to alter the microscopic flows and eddies so as the water evaporated, the silica formed straighter, more uniform microwires.

The researchers anticipate that their processing technology will allow complete control of nanoparticle self-assembly for various technologies, including microwire devices and sensors, photon sources, and possibly silica-based integrated circuits.

It also will enable the production of selective devices such as chemical and biological sensors, photovoltaic structures, and novel switches in both optical fiber form and on waveguides – all of which could lead to technologies that seamlessly integrate microfluidic, electronic, quantum, and photonic functionality.

Paper: “Laser tailoring surface interactions, contact angles, drop topologies, and the self-assembly of optical microwires,” J. Canning et al., Optical Materials Express, Vol. 3, Issue 2, pp. 284-294 (2013)

EDITOR’S NOTE: Images are available to members of the media upon request. Contact Brielle Day, bday@osa.org.

About Optical Materials Express

Optical Materials Express (OMEx) is OSA's newest peer-reviewed, open-access journal focusing on the synthesis, processing and characterization of materials for applications in optics and photonics. OMEx primarily emphasizes advances in novel optical materials, their properties, modeling, synthesis and fabrication techniques; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. It is published by the Optical Society and edited by David J. Hagan of the University of Central Florida. For more information, visit www.OpticsInfoBase.org/OMEx.

About OSA

Uniting more than 180,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

About Business Wire
Copyright © 2009 Business Wire. All rights reserved. Republication or redistribution of Business Wire content is expressly prohibited without the prior written consent of Business Wire. Business Wire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Cloud Developer Stories
CodeFutures, a provider of agile Big Data technologies, on Tuesday announced the release of Cory Isaacson’s newest book, “Understanding Big Data Scalability.” Isaacson is the CEO/CTO for CodeFutures and an industry-leading innovator of data management software. “Understanding Big...
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a ...
Cloud Computing is evolving into a Big Three of Amazon Web Services, Google Cloud, and Microsoft Azure. Cloud 360: Multi-Cloud Bootcamp, being held Nov 4–5, 2014, in conjunction with 15th Cloud Expo in Santa Clara, CA, delivers a real-world demonstration of how to deploy and co...
Octoblu on Tuesday emerged from stealth mode to announce its vision to provide an Internet of Things (IoT) platform for real-time connections and communication management across applications, people and physical devices. The convergence of global trends, including cloud computi...
While there are many ways to define DevOps, the goal of the concept is to be able to deliver IT solutions faster, leveraging several technology tools to add value for business. Cloud companies have demonstrated how they can manage massive pools of IT infrastructure, giving the de...
Subscribe to the World's Most Powerful Newsletters
Subscribe to Our Rss Feeds & Get Your SYS-CON News Live!
Click to Add our RSS Feeds to the Service of Your Choice:
Google Reader or Homepage Add to My Yahoo! Subscribe with Bloglines Subscribe in NewsGator Online
myFeedster Add to My AOL Subscribe in Rojo Add 'Hugg' to Newsburst from CNET News.com Kinja Digest View Additional SYS-CON Feeds
Publish Your Article! Please send it to editorial(at)sys-con.com!

Advertise on this site! Contact advertising(at)sys-con.com! 201 802-3021



SYS-CON Featured Whitepapers
ADS BY GOOGLE