Comments
yourfanat wrote: I am using another tool for Oracle developers - dbForge Studio for Oracle. This IDE has lots of usefull features, among them: oracle designer, code competion and formatter, query builder, debugger, profiler, erxport/import, reports and many others. The latest version supports Oracle 12C. More information here.
Cloud Expo on Google News
SYS-CON.TV
Cloud Expo & Virtualization 2009 East
PLATINUM SPONSORS:
IBM
Smarter Business Solutions Through Dynamic Infrastructure
IBM
Smarter Insights: How the CIO Becomes a Hero Again
Microsoft
Windows Azure
GOLD SPONSORS:
Appsense
Why VDI?
CA
Maximizing the Business Value of Virtualization in Enterprise and Cloud Computing Environments
ExactTarget
Messaging in the Cloud - Email, SMS and Voice
Freedom OSS
Stairway to the Cloud
Sun
Sun's Incubation Platform: Helping Startups Serve the Enterprise
POWER PANELS:
Cloud Computing & Enterprise IT: Cost & Operational Benefits
How and Why is a Flexible IT Infrastructure the Key To the Future?
Click For 2008 West
Event Webcasts
Fujitsu Develops Compact, High-Performance and Energy-Efficient DSP for Mobile Device Baseband Processing

Leverages supercomputer technology to lower energy requirements for smartphones and other wireless mobile devices

Kawasaki, Japan, Feb 1, 2013 - (JCN Newswire) - Fujitsu Laboratories Limited today announced the development of a digital signal processor (DSP) for use in mobile device baseband processing. By employing a vector processing architecture(1) as used in supercomputers, the DSP can efficiently run highly repetitive processes common in LTE(2) and other wireless processes. This, in turn, allows for greater energy efficiency.

By using 28-nanometer (nm) process technology and when running at 250 MHz, DSP is capable of processing data at 12 GOPS (12 billion operations per second). Excluding memory, the DSP measures only 0.4 mm2, and it consumes only 30 milliwatts (mW) of power, 20% less than existing DSPs.

The new DSP is expected to help lengthen talk times, usage times and standby times for smartphones and other mobile devices. In addition, revisions to the signal processing algorithm can be implemented through modifications to the DSP program, enabling fine-tuning of reception characteristics after the wireless baseband LSI has been manufactured, thereby contributing to shorter development lead times.

Details of the new technology will be presented at the 2013 International Symposium on VLSI Design, Automation and Test (2013 VLSI-DAT), scheduled to open on April 22 in Taiwan.

Background

In recent years, smartphones, tablets, and other wireless devices have rapidly gained in popularity. As the speed of wireless networks increase, manufacturers have launched models that support new wireless communications standards such as LTE, which is currently being rolled out worldwide, in addition to conventional standards such as GSM and 3G. To support these wireless standards, a signal processing circuit (baseband processor) compliant with each computation is required. As a result, being able to reduce the size and power consumption of baseband processor components is crucial to improving the cost and battery life of devices.

Technological Challenges

Typical baseband processing circuits are implemented using specialized hardware to support each communications standard, requiring a number of circuits to support different standards. Consequently, reducing the size of circuits has proved challenging. On the other hand, there exist alternative software-based approaches to supporting each communications standards using DSPs. Given the massive signal processing requirements of LTE, however, these approaches are limited in their ability to simultaneously achieve both high processing performance and low energy consumption.

Newly Developed Technology

Fujitsu Laboratories has developed a new DSP that employs a vector processing architecture used in supercomputers. The DSP can efficiently run highly repetitive processes that are common in LTE and other wireless processes, thereby achieving greater energy efficiency.

Key features of the newly developed DSP are as follows:

1) Vector processing architecture

The DSP employs a vector architecture found in supercomputers. With a typical processor, a single instruction will be executed on a single piece of data at a time (scalar data). By contrast, a vector processor will execute a single instruction on multiple pieces of data (vector data) at a time. As a result, when repeating the same process for multiple data elements, the ability of the vector architecture to complete a task with a single instruction makes it possible to cut down on the amount of processing and energy required to read and decode instructions from the memory.

LTE uses the OFDM(3) modulation method and communicates by bundling data that is carried by up to 1,200 "subcarriers" in a wireless signal. To extract information from an incoming signal, the DSP must apply the same process repeatedly for each subcarrier. This makes the vector approach more effective.

Figure 1 shows a block diagram of the newly developed DSP. The DSP consists of a vector engine, which employs a vector architecture, as well as a conventional CPU. The CPU reads in program code from the instruction memory, decodes the instruction, and if the vector approach is suitable for use on the instruction, it is transferred to the vector engine where it is executed. Other instructions are executed in the CPU as usual.

2) Vector engine optimized for baseband processing

Figure 2 shows an internal diagram of the vector engine itself. Instructions transferred from the CPU are stored in the instruction buffer. Stored instructions are decoded one by one by the sequencer, and the required vector processing pipeline(4) is controlled to execute the instruction. The number of vector data (vector length) that can be calculated in a single instruction is 64 data elements, a value optimized for use in mobile device baseband processing. Rather than processing 64 data elements sequentially, eight parallel processing elements process the data in eight rounds, thereby achieving higher speeds.

The vector engine features a small circuit size, and to increase the efficiency of baseband processing, there are two pipelines for processing multiply instructions on vector data, and there are also two pipelines for processing load instructions (or conversely, store instructions) that load vector data to the register file, which temporarily stores data from memory, for a total of four pipelines. All four pipelines can process addition, subtraction, and logic operations on vector data.

Results

With the addition of the newly developed vector engine, many pieces of data can be processed with a single instruction, thereby enabling more efficient data processing. This, in turn, will significantly contribute to reduced energy consumption in wireless baseband LSIs. A DSP using 28nm process technology and running at 250 MHz is able to process 12 GOPS (12 billion operations per second). Fujitsu Laboratories succeeded in developing a compact DSP that measures only 0.4 mm2 (without memory) and, in terms of power consumption, requires only 30mW - a 20% improvement over existing DSPs.

The new DSP is expected to help lengthen talk times, usage times and standby times for smartphones and other mobile phones. In addition, revisions to the signal processing algorithm can be implemented through modifications to the DSP program, enabling fine-tuning of reception characteristics after the wireless baseband LSI has been manufactured, thereby contributing to shorter development lead times.

Future Development

The new DSP will be incorporated into a communications processor from Access Network Technology Limited that is scheduled for use in Fujitsu smartphones and elsewhere. Going forward, Fujitsu Laboratories plans to continue making performance improvements to the processor to enable it to keep pace with advances in higher speed wireless communications standards.

(1) Vector processing architecture: A processor architecture for processing calculations on vector data (a one-dimensional array of data) with a single instruction.
(2) Long Term Evolution (LTE): The name of the latest mobile communications standard for wireless devices.
(3) Orthogonal Frequency-Division Multiplexing (OFDM): A wireless modulation encoding used also in wireless LANs.
(4) Processing pipeline: A circuit that executes an arithmetic process according to an instruction. By dividing execution into multiple stages, the calculation is executed according to a workflow process.

For further details with diagrams, please visit www.fujitsu.com/global/news/pr/archives/month/2013/20130201-04.html.

About Fujitsu Limited

Fujitsu is the leading Japanese information and communication technology (ICT) company offering a full range of technology products, solutions and services. Over 170,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE:6702) reported consolidated revenues of 4.5 trillion yen (US$54 billion) for the fiscal year ended March 31, 2012. For more information, please see www.fujitsu.com.



Source: Fujitsu Limited

Contact:

Fujitsu Limited
Public and Investor Relations
www.fujitsu.com/global/news/contacts/
+81-3-3215-5259


Copyright 2013 JCN Newswire. All rights reserved. www.japancorp.net
About JCN Newswire
Copyright 2008 JCN Newswire. All rights reserved. Republication or redistribution of JCN Newswire content is expressly prohibited without the prior written consent of JCN Newswire. JCN Newswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Latest Cloud Developer Stories
Compute virtualization has been transformational, yet security policy implementation and enforcement has lagged behind in agility and automation. There are a number of key considerations when implementing policy in private and hybrid clouds. In his session at 15th Cloud Expo, H...
Can we look to the paradigm of cloud computing from a completely different perspective? In his General Session at 15th Cloud Expo, Gundars Kulups, Sales Director at DEAC, will discuss what we can learn from our dining habits when choosing a cloud solution. Gundars Kulups is Sal...
SYS-CON Events announced today that SOA Software, an API management leader, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. SOA Software is a leading provider of API M...
As cloud gives an opportunity to businesses to buy services externally - how is cloud impacting your customers? In his General Session at 15th Cloud Expo, Fabio Gori, Director of Worldwide Cloud Marketing at Cisco, will provide answers to big questions: Do you see hybrid cloud a...
SYS-CON Events announced today that Aria Systems, the recurring revenue expert, has been named "Bronze Sponsor" of SYS-CON's 15th International Cloud Expo®, which will take place on November 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Aria Systems helps le...
Subscribe to the World's Most Powerful Newsletters
Subscribe to Our Rss Feeds & Get Your SYS-CON News Live!
Click to Add our RSS Feeds to the Service of Your Choice:
Google Reader or Homepage Add to My Yahoo! Subscribe with Bloglines Subscribe in NewsGator Online
myFeedster Add to My AOL Subscribe in Rojo Add 'Hugg' to Newsburst from CNET News.com Kinja Digest View Additional SYS-CON Feeds
Publish Your Article! Please send it to editorial(at)sys-con.com!

Advertise on this site! Contact advertising(at)sys-con.com! 201 802-3021



SYS-CON Featured Whitepapers
ADS BY GOOGLE

Breaking Cloud Computing News

In an increasingly connected world, enterprises are extending new business models, ...