Comments
yourfanat wrote: I am using another tool for Oracle developers - dbForge Studio for Oracle. This IDE has lots of usefull features, among them: oracle designer, code competion and formatter, query builder, debugger, profiler, erxport/import, reports and many others. The latest version supports Oracle 12C. More information here.
Cloud Expo on Google News
SYS-CON.TV
Cloud Expo & Virtualization 2009 East
PLATINUM SPONSORS:
IBM
Smarter Business Solutions Through Dynamic Infrastructure
IBM
Smarter Insights: How the CIO Becomes a Hero Again
Microsoft
Windows Azure
GOLD SPONSORS:
Appsense
Why VDI?
CA
Maximizing the Business Value of Virtualization in Enterprise and Cloud Computing Environments
ExactTarget
Messaging in the Cloud - Email, SMS and Voice
Freedom OSS
Stairway to the Cloud
Sun
Sun's Incubation Platform: Helping Startups Serve the Enterprise
POWER PANELS:
Cloud Computing & Enterprise IT: Cost & Operational Benefits
How and Why is a Flexible IT Infrastructure the Key To the Future?
Click For 2008 West
Event Webcasts
Machine Learning - Azure vs AWS By @SrinivasanSunda | @CloudExpo #IoT #Cloud
The importance of machine learning

Machine Learning - Azure vs AWS

Machine Learning, which is a process to predict future patterns and incidents based on the models created out of past data, is definitely the most important part of the success of the Internet of Things in the enterprise and consumer space. The main reason is that without machine learning the entire backbone of the Internet of Things - event acquisition, event processing , event storage and event reporting - is merely a live display of events happening elsewhere and will not provide any value to its consumers. Think of a smart monitor in an oil well that monitors various climatic conditions and other factors that can cause a failure; unless the monitor is able to predict of a failure and corrects itself the usage of such solution is quite limited.

MLPaaS - Azure Vs AWS
In that context, Machine Learning Platform as a Service (MLPaaS) has been a major component of the major cloud platforms. Both Azure and AWS have equivalent services, the below thoughts are comparison of major building blocks of a machine learning service and how the respective cloud providers handle them.

Machine Learning Component

Azure

Amazon AWS

Training Data Enablement: As the machine learning falls in to two major categories of Supervised Learning and Unsupervised Learning, proper training data is one of the most important aspect of a success of a machine learning experiment and how well a MLPaaS facilitates availability and usage of training data is a key factor.

Azure ML has extensive options for data input and manipulation. The Data sources could be any of, Hive, Azure SQL, Blob Storage, web based data feeding engines and even the data could be manually entered.

 

Never a input data from source could be directly used as a training data and hence in this context, Azure ML has an array of transformation functions like, Filter, Data Manipulation, Split and Reduce.

 

With the effective use of above options Azure ML will provide an effective means of integrating training data as part of the machine learning process.

AWS Machine Learning also supports multiple data sources within its eco system.

 

Amazon Simple Storage Service (Amazon S3) is storage for the AWS cloud platform. Amazon ML uses Amazon S3 as a

primary data repository.

 

Amazon ML allows you to create a data source object from data residing in Amazon Redshift, which is the Data Warehouse Platform as a service.

 

Amazon ML also allows you to create a datasource object from data stored in a MySQL database in Amazon

Relational Database Service (Amazon RDS).

 

Also Amazon ML provides a rich set of data transformation functions like, N-gram transformation, Orthogonal Sparse Bigram transformation and more.

Support For Machine Learning Life Cycle: Developing and consuming a machine learning model for an enterprise use case is in itself a eco system. There are multiple players like data scientist, data analyst, ETL Developers, Visualization Engineers and business users are involved and each one plays an important role. Hence any machine learning service should support this life cycle of work flow.

One of the key success factor of Azure ML is the positioning of Azure ML studio and its user friendly graphical interface and supporting workflows which makes the machine learning process highly collaborative and interactive.

The concept of Workspace nicely allows for separation of duties as well as seamless integration with rest of Azure eco system like storage. Typically Data scientist initially creates models and train them with various parameters and data combinations \. Also rich Visualization features help data scientist to test the results easily.

Once a model is trained successfully, Azure provides easy options to create a scoring experiment which can be ultimately published as a web service to be consumed by client applications.

The graphical interface of Amazon ML provides a very similar experience and features in terms of creating and training models.

 

While there is no separation between a training and scoring experiment, Amazon ML provides lot of options for model evaluation and interpretation.

 

When we evaluate an ML model, Amazon ML provides an industry-standard metric and a number of

insights to review the predictive accuracy of the model.

Algorithm Support: This is probably the most important piece of evaluating a machine learning service as there are different algorithms which can be applied for different situations.

While almost all machine learning solutions are covered under the three major categories namely, Clustering, Classification and Regression based on whether we needed a supervised machine learning or unsupervised machine learning.

However the real challenge could be the particular algorithm that suit the above 3 analysis categories.

Azure machine learning supports a whole array of algorithms be it, Decision Trees, Logistic Regression, Bayes Point Machine, Nerual Networks, K-Means ... to just name a few.

One important aspect of Azure machine learning is the democratization of these advanced algorithms that even without any programming knowledge of machine learning languages like R we could effectively deploy them for given use cases.

Amazon ML supports three types of ML models: binary classification, multiclass classification, and regression.

 

As the name indicates, Binary classification is used to predict one of two possible out comes.

 

Multi class classification is used to predict one of three or more possible out comes.

 

Regression is used to predict a continuous variable which is a number.

However as per documentation there does not seem to be an option within the Amazon ML to select individual algorithms like a K-Means as part of evaluating the model.

Consumer Applications: Once the model is trained it has to be put into the practice and the most natural usage is that the results of machine learning are to be used as part of consumer application and in todays context it is mostly a mobile based consumer. So a robust machine learning service should support multiple consumer applications too.

Azure machine learning provides ready to go client side code for the web services that are published. It supports clients for both request and response model as well as batch based execution. Azure machine learning also produces sample client side code in C#, Python and R. It provides an easy interface for testing the request and response parameters. When it comes to batch execution, Azure machine learning provides APIs for submitting and starting a job and sample code is available in C#, Python and R. With this support Azure machine learning provides excellent support for developing client side applications.

Amazon support both batch predictions as well as real time predictions with the support of API for each of the tasks.

 

Amazon ML API has batch prediction APIs like, Create, Update, Delete which can be used for creating batch applications.

 

Similarly the real time machine learning API samples are available in platforms like Java, Python and Scala.

Pricing aspects are not discussed in the table because PaaS solutions like machine learning are charged per usage and the pricing is either per prediction or by per prediction hour and typically enterprises would worry more about the capabilities of the platform in choosing a machine learning service.

Also without doing significant machine learning case studies we cannot comment on the algorithms and their support; however, a higher level view indicates that Azure Machine Learning supports more algorithms and individual choice of algorithms within a category like clustering, classification which may be of interest to seasoned data scientists. Also most data scientists predict the future of machine learning will be on unsupervised learning which has got a good support from Azure in the form clustering algorithms, especially the K-Means algorithm.

About Srinivasan Sundara Rajan
Highly passionate about utilizing Digital Technologies to enable next generation enterprise. Believes in enterprise transformation through the Natives (Cloud Native & Mobile Native).

Latest Cloud Developer Stories
CloudEXPO | DevOpsSUMMIT | DXWorldEXPO Silicon Valley 2019 will cover all of these tools, with the most comprehensive program and with 222 rockstar speakers throughout our industry presenting 22 Keynotes and General Sessions, 250 Breakout Sessions along 10 Tracks, as well as our ...
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, vi...
Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. ...
Crosscode Panoptics Automated Enterprise Architecture Software. Application Discovery and Dependency Mapping. Automatically generate a powerful enterprise-wide map of your organization's IT assets down to the code level. Enterprise Impact Assessment. Automatically analyze t...
Your job is mostly boring. Many of the IT operations tasks you perform on a day-to-day basis are repetitive and dull. Utilizing automation can improve your work life, automating away the drudgery and embracing the passion for technology that got you started in the first place. In...
Subscribe to the World's Most Powerful Newsletters
Subscribe to Our Rss Feeds & Get Your SYS-CON News Live!
Click to Add our RSS Feeds to the Service of Your Choice:
Google Reader or Homepage Add to My Yahoo! Subscribe with Bloglines Subscribe in NewsGator Online
myFeedster Add to My AOL Subscribe in Rojo Add 'Hugg' to Newsburst from CNET News.com Kinja Digest View Additional SYS-CON Feeds
Publish Your Article! Please send it to editorial(at)sys-con.com!

Advertise on this site! Contact advertising(at)sys-con.com! 201 802-3021



SYS-CON Featured Whitepapers
Most Read This Week
ADS BY GOOGLE