Comments
yourfanat wrote: I am using another tool for Oracle developers - dbForge Studio for Oracle. This IDE has lots of usefull features, among them: oracle designer, code competion and formatter, query builder, debugger, profiler, erxport/import, reports and many others. The latest version supports Oracle 12C. More information here.
Cloud Expo on Google News
SYS-CON.TV
Cloud Expo & Virtualization 2009 East
PLATINUM SPONSORS:
IBM
Smarter Business Solutions Through Dynamic Infrastructure
IBM
Smarter Insights: How the CIO Becomes a Hero Again
Microsoft
Windows Azure
GOLD SPONSORS:
Appsense
Why VDI?
CA
Maximizing the Business Value of Virtualization in Enterprise and Cloud Computing Environments
ExactTarget
Messaging in the Cloud - Email, SMS and Voice
Freedom OSS
Stairway to the Cloud
Sun
Sun's Incubation Platform: Helping Startups Serve the Enterprise
POWER PANELS:
Cloud Computing & Enterprise IT: Cost & Operational Benefits
How and Why is a Flexible IT Infrastructure the Key To the Future?
Click For 2008 West
Event Webcasts
Election #DataScience and the Death of Truth | @CloudExpo #BigData #Analytics
Many candidates treated opinions as ‘truth’ and a large portion of the American public grabbed ahold of these ‘truths’ as gospel

The U.S. Presidential election is finally over. The protests are winding down, they’ve stopped burning cars in Oakland (for now), and the talks of California succession are waning. But I am struggling to return to “normal” because in this election, truth got hammered.

Many candidates treated opinions as “truth” and a large portion of the American public grabbed a hold of these “truths” as gospel. It may have been a good time to be in the “fact checking” business, but I’m not sure how effective even the fact checkers could be given the spontaneous nature of “opinions as facts” being thrown around, not to mention the people who create fake news intentionally.

So let’s play a game! Let’s call this game “Separate the Truth from the Myths.” Let’s see how you do.

  1. Bat Boy Sighted in NYC Subway (probably too expensive to get a condo in Manhattan)
  2. Obama Appoints Martian Ambassador (but the Senate will request Matt Damon since he’s already lived and farmed on Mars)
  3. Skynet is a Reality (Hey, even Iron Man showed up at the Senate to tell them so!)
  4. Ted Cruz Shot JFK (okay, so it actually was his dad, but accusing Ted Cruz is more funny)

All but one of these stories appeared in the highly credible “National Enquirer” or “Weekly World News.” That’s like buying a copy of the “Mad Magazine” (for you old timers) or reading “The Onion” (for you young whippersnappers) expecting the “truth” from these satirical publications (see Figure 1).

Figure 1: Real Headlines from “Less Than Credible” Sources

However the below stories in Figure 2 where plastered across social media sites as if they were the truth, and as you can see from the engagement numbers, lots of people took the time to read these “truths.”

Figure 2: Social Media Fake News and Number of Views

Data Science And Common Sense
As a data scientist, we need to know not to accept the “truth” without applying some common sense. For all the fancy training in neural networks, artificial intelligence and machine learning, it’s hard to replace “common sense” as a necessary data scientist characteristic. Let’s walk through an example of how a data scientist might approach one of the sensational stories that recently popped up on social media (see Figure 3).

Figure 3: The Guardian, September 26, 2016

OMG, murders are up 10.8% in the biggest percentage increase since 1971, according to a highly credible source like the FBI. It’s become the “Walking Dead” out there!

Sensational headlines grab attention and incite fear and dread. “Dirty Laundry” sells. But the problem with data at the aggregate level is that it:

  • Distorts the real truth (or root cause) of what’s the problem, and
  • It is not actionable

The above headline could lead to the conclusion that the current criminal and rehabilitation policies have failed and everything should be thrown out. But there are no details as to what aspects of these programs are broken and no triage of the root causes in order to explore what might be done to fix the problem. As a data scientist, one must demand the granular details so that we can turn the data into insights in order to make the information actionable, such as:

This is a good starting point. If we want to address the increase in murders, we need to drill into each individual murder (and attempted murder) in those 10 cities. We need to keep drilling into the granular details in order to identify those variables and metrics that might be predictors of murders and attempted murders.

For example, we could identify the specific blocks of these cities where the murders are occurring, or the time of day and day of week, or the time of the year, or any special events that occurred right before the murders, etc. We could explore other variables that might be indicative of an increase in murder (e.g., % of broken homes, % of children born out of wedlock, % of high school dropouts, % of drug addicts, unemployment rate among male adults, increase in graffiti).

Once we know those variables that are predictive of murders, then we have a focus as to where we can start fixing the problem, taking corrective actions such as adding more police or community outreach, reducing high school dropouts, increasing drug arrests, testing different programs and approaches, measuring program effectiveness, learning and improving. Now that’s thinking like a data scientist.

Data Scientist Lessons Learned
What are the lessons that we can take away from this “opinions as facts” syndrome?

  • Common sense is critical. Don’t accept “truths” at face value. Demand more details in order to identify and quantify those variables and metrics that might be predictive or indicative of the researched problem.
  • You can’t fix the business – or the country – without drilling into the details and the potential causal factors. We need insights that are drawn from facts that are supported by granular data so that we know what actions to take. With these detailed insights in hand, we now know where to invest our scarce financial and human resources.
  • Details matter. At the aggregate level, the headlines may be sensational, but it is not insightful or actionable until you get into the details. Remember Simpson’s Paradox.
  • Data quality, accuracy and reasonableness are important, especially if you are trying to make business-impactful decisions based upon that data. Business users, if they are expected to use the data to support decisions, must have confidence in the data. “Facts as Facts” are critical if we want to overcome decisions being made on a traditional basis such as gut, hearsay and history.

The good data scientist learns not to trust anything at first blush; that while opinions might yield variables and metrics that might be better predictors of performance, in the end the data scientists need to validate each of these variables and metrics to quantify if they really are better predictors of performance.

In the movie “Star Wars: The New Hope," the weak-minded Storm Troopers were easily dissuaded from pursuing the truth about the droids by Obi-Wan Kenobi’s use of the Jedi Mind Trick to plant the “truth” in their weak minds.

Don’t be weak-minded about seeking the truth. Use your common sense to challenge the “truth,” and get into the granular details so that one can identify and quantify those variables and metrics that are better predictor or indicators of the problems.

And beware the “These aren’t the Droids you’re looking for” syndrome. That’s for the weak-minded.

The post Election Data Science and the Death of Truth appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

About William Schmarzo
Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Hitachi Vantara as CTO, IoT and Analytics.

Previously, as a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

Latest Cloud Developer Stories
With more than 30 Kubernetes solutions in the marketplace, it's tempting to think Kubernetes and the vendor ecosystem has solved the problem of operationalizing containers at scale or of automatically managing the elasticity of the underlying infrastructure that these solutions n...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructur...
When building large, cloud-based applications that operate at a high scale, it's important to maintain a high availability and resilience to failures. In order to do that, you must be tolerant of failures, even in light of failures in other areas of your application. "Fly two mis...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performa...
As Cybric's Chief Technology Officer, Mike D. Kail is responsible for the strategic vision and technical direction of the platform. Prior to founding Cybric, Mike was Yahoo's CIO and SVP of Infrastructure, where he led the IT and Data Center functions for the company. He has more...
Subscribe to the World's Most Powerful Newsletters
Subscribe to Our Rss Feeds & Get Your SYS-CON News Live!
Click to Add our RSS Feeds to the Service of Your Choice:
Google Reader or Homepage Add to My Yahoo! Subscribe with Bloglines Subscribe in NewsGator Online
myFeedster Add to My AOL Subscribe in Rojo Add 'Hugg' to Newsburst from CNET News.com Kinja Digest View Additional SYS-CON Feeds
Publish Your Article! Please send it to editorial(at)sys-con.com!

Advertise on this site! Contact advertising(at)sys-con.com! 201 802-3021



SYS-CON Featured Whitepapers
ADS BY GOOGLE