Comments
yourfanat wrote: I am using another tool for Oracle developers - dbForge Studio for Oracle. This IDE has lots of usefull features, among them: oracle designer, code competion and formatter, query builder, debugger, profiler, erxport/import, reports and many others. The latest version supports Oracle 12C. More information here.
Cloud Expo on Google News
SYS-CON.TV
Cloud Expo & Virtualization 2009 East
PLATINUM SPONSORS:
IBM
Smarter Business Solutions Through Dynamic Infrastructure
IBM
Smarter Insights: How the CIO Becomes a Hero Again
Microsoft
Windows Azure
GOLD SPONSORS:
Appsense
Why VDI?
CA
Maximizing the Business Value of Virtualization in Enterprise and Cloud Computing Environments
ExactTarget
Messaging in the Cloud - Email, SMS and Voice
Freedom OSS
Stairway to the Cloud
Sun
Sun's Incubation Platform: Helping Startups Serve the Enterprise
POWER PANELS:
Cloud Computing & Enterprise IT: Cost & Operational Benefits
How and Why is a Flexible IT Infrastructure the Key To the Future?
Click For 2008 West
Event Webcasts
Data Unification at Scale | @CloudExpo #BigData #DataLake #AI #Analytics
This term Data Unification is new in the Big Data lexicon, pushed by varieties of companies

This term Data Unification is new in the Big Data lexicon, pushed by varieties of companies such as Talend, 1010Data, and TamR. Data unification deals with the domain known as ETL (Extraction, Transformation, Loading), initiated during the 1990s when Data Warehousing was gaining relevance. ETL refers to the process of extracting data from inside or outside sources (multiple applications typically developed and supported by different vendors or hosted on separate hardware), transform it to fit operational needs (based on business rules), and load it into end target databases, more specifically, an operational data store, data mart, or a data warehouse. These are read-only databases for analytics. Initially the analytics was mostly retroactive (e.g. how many shoppers between age 25-35 bought this item between May and July?). This was like driving a car looking at the rear-view mirror. Then forward-looking analysis (called data mining) started to appear. Now business also demands "predictive analytics" and "streaming analytics".

During my IBM and Oracle days, the ETL in the first phase was left for outside companies to address. This was unglamorous work and key vendors were not that interested to solve this. This gave rise to many new players such as Informatica, Datastage, Talend and it became quite a thriving business. We also see many open-source ETL companies.

The ETL methodology consisted of: constructing a global schema in advance, for each local data source write a program to understand the source and map to the global schema, then write a script to transform, clean (homonym and synonym issues) and dedup (get rid of duplicates) it. Programs were set up to build the ETL pipeline. This process has matured over 20 years and is used today for data unification problems. The term MDM (Master Data Management) points to a master representation of all enterprise objects, to which everybody agrees to confirm.

In the world of Big Data, this approach is very inadequate. Why?

  • Data unification at scale is a very big deal. The schema-first approach works fine with retail data (sales transactions, not many data sources,..), but gets extremely hard with sources that can be hundreds or even thousands. This gets worse when you want to unify public data from the web with enterprise data.
  • Human labor to map each source to a master schema gets to be costly and excessive. Here machine learning is required and domain experts should be asked to augment where needed.
  • Real-time data unification of streaming data and analysis can not be handled by these solutions.

Another solution called "data lake" where you store disparate data in their native format, seems to address the "ingest" problem only. It tries to change the order of ETL to ELT (first load then transform). However it does not address the scale issues. The new world needs bottoms-up data unification (schema-last) in real-time or near real-time.

The typical data unification cycle can go like this - start with a few sources, try enriching the data with say X, see if it works, if you fail then loop back and try again. Use enrichment to improve and do everything automatically using machine learning and statistics. But iterate furiously. Ask for help when needed from domain experts. Otherwise the current approach of ETL or ELT can get very expensive.

  • LikeData Unification at scale
  • Comment
  • ShareShare Data Unification at scale



Read the original blog entry...

About Jnan Dash
Jnan Dash is Senior Advisor at EZShield Inc., Advisor at ScaleDB and Board Member at Compassites Software Solutions. He has lived in Silicon Valley since 1979. Formerly he was the Chief Strategy Officer (Consulting) at Curl Inc., before which he spent ten years at Oracle Corporation and was the Group Vice President, Systems Architecture and Technology till 2002. He was responsible for setting Oracle's core database and application server product directions and interacted with customers worldwide in translating future needs to product plans. Before that he spent 16 years at IBM. He blogs at http://jnandash.ulitzer.com.

Latest Cloud Developer Stories
Wooed by the promise of faster innovation, lower TCO, and greater agility, businesses of every shape and size have embraced the cloud at every layer of the IT stack – from apps to file sharing to infrastructure. The typical organization currently uses more than a dozen sanctioned...
By 2021, 500 million sensors are set to be deployed worldwide, nearly 40x as many as exist today. In order to scale fast and keep pace with industry growth, the team at Unacast turned to the public cloud to build the world's largest location data platform with optimal scalability...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, will provide an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to Co...
"I think DevOps is now a rambunctious teenager – it’s starting to get a mind of its own, wanting to get its own things but it still needs some adult supervision," explained Thomas Hooker, VP of marketing at CollabNet, in this SYS-CON.tv interview at DevOps Summit at 20th Cloud Ex...
"We are still a relatively small software house and we are focusing on certain industries like FinTech, med tech, energy and utilities. We help our customers with their digital transformation," noted Piotr Stawinski, Founder and CEO of EARP Integration, in this SYS-CON.tv intervi...
Subscribe to the World's Most Powerful Newsletters
Subscribe to Our Rss Feeds & Get Your SYS-CON News Live!
Click to Add our RSS Feeds to the Service of Your Choice:
Google Reader or Homepage Add to My Yahoo! Subscribe with Bloglines Subscribe in NewsGator Online
myFeedster Add to My AOL Subscribe in Rojo Add 'Hugg' to Newsburst from CNET News.com Kinja Digest View Additional SYS-CON Feeds
Publish Your Article! Please send it to editorial(at)sys-con.com!

Advertise on this site! Contact advertising(at)sys-con.com! 201 802-3021



SYS-CON Featured Whitepapers
ADS BY GOOGLE